Mark Scheme Scalar/Vector Past Paper Questions

Jan 2002 to Jan 2009

3(a) displacement is a vector ✓ ball travels in opposite directions ✓

Q3 Jan 2003

 $\max(I)$

(b) velocity is rate of change of displacement average speed is rate of change of distance velocity is a vector [or speed is a scalar] velocity changes direction

any two \checkmark \checkmark (2)

(c)(i) $a = \frac{(-6.0 - 8.0)}{0.10}$ \checkmark = (-)140.m s⁻¹ \checkmark

(allow C.E. for incorrect values of Δv)

- (c)(ii) $F = 0.45 \times (-)140 = (-)63 \text{ N} \checkmark \text{ (allow C.E for value of } a)$
- (c)(iii) away from wall ✓
 at right angles to wall ✓
 [or back to girl ✓ ✓]
 [or opposite to direction of velocity at impact ✓ ✓]

<u>(5)</u>

<u>(8)</u>

1

(a)(i) a quantity that has magnitude only [or has no direction] ✓

Q1 Jan 2004

(ii) any two: e.g. energy ✓ temperature ✓

(3)

scale \checkmark 5 N and 9.5 N \checkmark correct answer $(8.1 \text{ N} \pm 0.2 \text{ N}) \checkmark$

[or
$$9.5^2 = 5.0^2 + F^2 \checkmark$$

 $F^2 = 90.3 - 25 \checkmark$
 $F = 8.1 \text{ N} \checkmark$ (8.07 N)]

(ii) $\cos \theta = \frac{5.0}{9.5}$

gives $\theta = 58^{\circ} \checkmark (\pm 2^{\circ} \text{ if taken from scale diagram})$

<u>(4)</u>

<u>(7)</u>

Question 2

Q2 Jan 2005

- (a) vector quantities have direction (as well as magnitude)
 and scalar quantities do not ✓ (1)
- (b) vector: e.g. velocity, acceleration, momentum ✓ scalar: e.g. mass, temperature, energy ✓ (2)
- (c)(i) addition of forces (12 + 8) (use of F = ma gives) $a = \frac{(12 + 8)}{6.5} = 3.1 \text{ m s}^{-2}$ (3.08 m s⁻²)
 - (ii) subtraction of forces (12 8) \checkmark $a = \frac{(12 8)}{6.5} = 0.62 \,\text{m s}^{-2} \,\checkmark \qquad (0.615 \,\text{m s}^{-2})$

Question 2		Q2 Jan 2009	
(a)	(i)	vector has direction and a scalar does not ✓	
	(ii)	scalar examples; any two e.g. speed, mass, energy, time, power	
		vector examples; any two e.g. displacement, velocity, acceleration, force or weight	4
		✓✓✓ for 4 correct, ✓✓ for 3 correct, ✓ for 2 correct	
(b)	(i)	horizontal component (= 2.8 cos 35) = 2.3 (kN) (2293.6) ✓	
		vertical component (= 2.8 sin 35) = 1.6 (kN) (1606.0) ✓	
	(ii)	power = force × velocity or 2.3 kN × 8.3 m s ⁻¹ ✓ (ecf from 2 (b) (i))	5
		= 1.9 × 10 ⁴ (19037 or 19100) ✓ ecf	
		W (or Js ⁻¹) ✓ (or 19W (or kJs ⁻¹))	
(c)		(area of cross-section of cable =) $\pi \times (\frac{1}{2} 0.014)^2 \checkmark = 1.5(4) \times 10^{-4} (\text{m}^2) \checkmark$	
		stress (= F/A) = $\frac{2800 \text{N}}{1.54 \times 10^{-4} \text{m}^2}$ (allow ecf here if attempt to calculate area) \checkmark	5
		= 1.8(2) × 10 ⁷ ✓ ecf	
		Pa (or N m ⁻²) ✓	
		Total	14

1(a)(i) rate of change of velocity

[or
$$a = \frac{\Delta v}{t}$$
]

Q1 Jan 2002

- (ii) (acceleration) has (magnitude and) direction ✓ (2)
- (b)(i) (acceleration) is the gradient (or slope) of the graph \checkmark
 - (ii) (displacement) is the area (under the graph) ✓ (2)

(c) velocity

graph to show:

(linear) increase to $t = 2.0 \pm 0.2 \,\mathrm{s}$ \checkmark uniform velocity between 2.0 s and 6.0 s \checkmark (linear) decrease from $6.0 \pm 0.2 \,\mathrm{s}$ to $8.0 \,\mathrm{s}$ \checkmark zero velocity after $t = 8.0 \,\mathrm{s}$

(4)

(8)